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Abstract 
The purpose of this paper is to discuss grid generation issues and to challenge 
the grid generation community to develop tools suitable for automated 
multidisciplinary analysis and design optimization of aerospace vehicles. Special 
attention is given to the grid generation issues of computational fluid dynamics 
and computational structural mechanics disciplines. 

Introduction 
Design of an aerospace vehicle is multidisciplinary in nature, and 
multidisciplinary design optimization (MDO) exploits the synergism of primary, 
mutually interacting phenomena to improve the design. For more information on 
MDO methods, readers should consult the recent article by Zang and Green [1] 
and the special issue of AIAA Journal of Aircraft [2], both devoted to MDO. A 
reliable design of an advanced aerospace vehicle requires high-fidelity tools such 
as computational fluid dynamics (CFD) and computational structural mechanics 
(CSM). These tools require detailed grid models. 

This paper assumes that readers are familiar with the field of grid generation. 
These proceedings and the Handbook of Grid Generation [3] contain excellent 
discussions on most grid generation techniques. During the past two decades, 
tremendous progress has occurred in the geometry modeling and grid generation 
(GMGG) field. However, the lack of automated commercial GMGG tools is still 
a major barrier to routine applications of high-fidelity tools such as CFD and 
CSM for MDO of aerospace vehicles. Current commercial grid generation tools 
are not suitable for an automated design and optimization environment. The 
following sections will provide a brief overview of the critical elements of 
GMGG specific to an automated MDO process and elaborate on the reasons 
current tools are not suitable. 



  

Geometry Parameterization 
The choice of shape parameterization technique has an enormous impact on the 
formulation and implementation of an MDO solution. Reference [4] reviews and 
evaluates several shape parameterization techniques.  Today’s computer-aided 
design (CAD) systems are capable of creating dimension-driven (parametric) 
models that can capture the designer’s intent. The CAD systems have evolved 
into powerful feature-based solid modeling (FBSM) tools that can model most 
mechanical parts. For a more detailed account of FBSM CAD systems and role 
of CAD in MDO, readers are referred to Ref. [5].  

Most CAD systems provide access to their geometry operations through an 
application-programming interface (API), which can automate the grid 
generation process. Tools [6] and standards that can unify the API for popular 
CAD systems are under development.  The Object Management Group (OMG) 
has a proposal under review for standard CAD services that could enable the 
interoperability of CAD and grid generation tools through a common object 
request broker architecture (CORBA) interface.  For more details, readers are 
referred to <http://www.omg.org> (search “TC Work in Progress” for CAD 
Services RFP). 

Gradient-based optimization requires geometry sensitivity with respect to the 
design variables; analytical geometry sensitivity can prove to be difficult to 
obtain from a commercial CAD system. Finite difference methods can be used to 
approximate the geometry sensitivity (e.g., see Ref. [7]). For more details, 
readers are referred to Ref. [5]. 

Model Abstraction 
Analysis tools such as CFD and CSM usually require simplification and 
abstraction of the design model. This requirement is the most cumbersome 
aspect of the grid generation process. Unfortunately the model is often rebuilt 
from scratch, relying on the judgment of skilled analysts to remove details from 
the design, and duplicating much of the work of creating the original geometry. 
Armstrong et al. have proposed a set of operations that can facilitate the 
derivation of abstract models from CAD geometry [8,9].  Automation of model 
abstraction will allow a design process to use a set of hierarchical models with 
different levels of fidelity, which in turn will promote the use of variable-fidelity 
analysis and optimization. 

Automatic Grid Generation 
The complexity of geometry models is increasing in today's design environment; 
a CAD model often uses thousands of curves and surfaces to represent an 
aircraft. This level of complexity highlights the importance of automation.  



  

CAD Report magazine predicts that firms with design automation tools will 
thrive in the next decade [10]. Despite this and other similar predictions, 
commercial grid generation tools are interactive and require complex input. 
These tools are the most labor-intensive and time-consuming aspect of the design 
process. The interactive tools are appropriate for initial setup and for off-line 
visualization and interpretation, but their effectiveness in an automated MDO 
environment is very limited at best. 

Several techniques could automate the grid generation process. Feature-based 
grid generation (FBGG) is one such technique. Unfortunately, the approach is 
not available in a commercial grid generation tool yet. With this technique, the 
grid is generated for each base feature.  As each CAD feature is combined with 
other features by means of a Boolean operation to form the model, the individual 
feature grids could be combined by the same Boolean operation to form a new 
grid. As a result, design changes would have little or no effect on the grid 
generation process, and generating a new grid for a variant of an existing design 
would be easy.  Another possibility is to create a grid for an abstract model by 
suppressing the features unnecessary for analysis. The next two subsections 
provide overview of the CFD and CSM grid generation methods. 

CFD Grid Generation 

CFD analyses use the detailed definition of the external geometry, which can be 
represented as a solid model. With multiblock structured grid methods comes the 
problem of block topology creation. Existing techniques have simplified the 
topology creation, but the process still is not fully automated for a general class 
of geometries [11–12].  Successful applications of automated structured grid 
regeneration exist for a specific class of geometries (see Refs. [13, [14], [15], 16]). These 
methods generally rely on regenerating or deforming an existing field grid.  

If the topology of a solid model is available, then unstructured and Cartesian grid 
generation techniques can be fully automated. Fortunately, efforts in 
unstructured and Cartesian grid generation now appear to concentrate on 
automation and grid quality [3,17].  

CSM Grid Generation 

CSM analysis tools must be able to analyze the external and internal geometries, 
and today’s commercial CAD systems can represent these geometries by a solid 
model. Then, these models need to be decomposed into a set of beams, shells, 
and solid elements. CSM grid generation tools can be categorized by their 
methods of decomposition. These methods are based on either decomposition of 
a solid model into solid elements or dimensional reduction of a solid model into 
a mix of beam, shell, and solid elements. Most commercially available tools 



  

belong to the first category and are generally based on either an octree, 
Delaunay, or advancing front approach.   

The second category of CSM grid generation tools convert a solid model based 
on dimensional reduction of solid models, to an equivalent mix of beam, shell, 
and solid elements.  This category is especially important for aerospace 
applications, where the model usually is made of solid, shell, and beam elements. 
Operations also have been defined and implemented [18,19] for dimensional 
reduction of three-dimensional solid models.  

Grid Sensitivity Analysis 
Grid sensitivity is defined as the partial derivative of the grid-point coordinates 
with respect to a design variable. The sensitivity analysis is an essential building 
block of gradient-based optimization. Despite recent advances in sensitivity 
analysis, very few grid generation tools currently provide analytical grid-point 
sensitivity [13]. 

The sensitivity derivatives of a response t  with respect to the design variable 
vector v  can be written as 
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The term fR  is the field (volume) grid, sR  is the surface grid, and gR  is the 

geometry description. In some of the CSM literature, the sensitivity derivatives 
are referred to as the design velocity field. The first term on the right-hand side 
of Eq. (1) represents the sensitivity derivatives of the response with respect to 
the coordinates of the field grid-points. Readers are referred to Ref. [2], which 
contains an overview of recent advances in sensitivity analysis for CFD, CSM, 
and other fields. The second term on the right-hand side of Eq. (1) is the vector 
of the field grid-point sensitivity derivatives with respect to the surface grid-
points. The field grid generator must provide the sensitivity derivatives of the 
field grid-points with respect to the surface grid-points. The third term on the 
right-hand side of Eq. (1) denotes the surface grid sensitivity derivatives with 
respect to the geometry description; the surface grid generation tools must 
provide this term. The fourth term on the right-hand side of Eq. (1) signifies the 
surface geometry sensitivity derivatives with respect to the design variable 
vectors; geometry construction tools such as CAD must provide this term. 

Zang and Green have reviewed current methods and tools for sensitivity analysis 
[1]. There are four techniques for computing the sensitivity derivatives: 
automatic differentiation, complex variables, manual differentiation, and finite-
difference approximation. If the source codes are available and are written in 



  

FORTRAN or C, these codes can be differentiated either manually or with 
automatic differentiation tools.  

Automatic differentiation tools such as ADIFOR [20] (Automatic Differentiation 
of Fortran) or ADIC [21] (Automatic Differentiation of C) can simplify and 
automate the differentiation process. Argonne National Laboratory maintains a 
web site on computational differentiation tools* such as ADIC† and ADIFOR‡. 
These are preprocessing tools. For example, ADIFOR accepts as input a 
FORTRAN code, along with specifications of the input and output variables. 
ADIFOR then produces an augmented FORTRAN code that contains the 
original analysis capability plus the capability for computing the derivatives of 
all the specified output quantities with respect to all the specified input 
quantities. Another attractive alternative is the use of the complex variable 
technique [22,23]. Of course, a hand-coded differentiation will probably be more 
efficient in terms of both computation time and computer memory [1]. 

For structured grids, it is possible to use finite differences to calculate the 
sensitivity derivatives, but there are accuracy issues that must be considered. 
Figure 1 shows a high-speed civil transport (HSCT) with seven planform design 
variables and the errors involved in using a finite-difference approximation for 
shape sensitivity derivative calculations. This error behavior is typical of finite-
difference approximations for sensitivities. For larger step sizes the truncation 
error is predominant, and for smaller step sizes the round-off error is 
predominant. 
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Figure 1. HSCT model and error due to forward-difference approximation. 

                                                           
* http://www-unix.mcs.anl.gov/autodiff 
† http://www-fp.mcs.anl.gov/adic 
‡ http://www-unix.mcs.anl.gov/autodiff/ADIFOR 



  

An optimal step size exists where the error is minimum. This optimal step size is 
different for each design variable and output function, and also would vary for 
each optimization cycle. Estimating the error involved in finite-difference 
approximation of sensitivity derivatives is difficult. More details on the finite-
difference approximation error can be found in Refs. [24,25]. 

Grid Regeneration and Deformation 
During the design optimization process, the design surfaces are perturbed. These 
perturbations and the sensitivity derivatives must be transferred to the surface 
grid and propagated into field grids. Two basic techniques are available to 
propagate the surface grid-point movements into the field: 1) grid regeneration 
and 2) grid deformation. Both of these techniques will be discussed for 
structured and unstructured grids. 

Structured Grid Generation and Deformation 

Most structured grid regeneration and deformation techniques are based on 
transfinite interpolation (TFI). Gaitonde and Fiddes used a grid regenerating 
technique based on TFI with exponential blending functions [26]. The choice of 
blending functions has a considerable influence on the quality and robustness of 
the field grid. Soni proposed a set of blending functions based on arc length [27]; 
such a set is extremely effective and robust for grid regeneration and 
deformation. Soni’s algorithm has been incorporated into most commercial 
structured grid generation packages. Jones and Samareh presented an algorithm 
for general multiblock grid regeneration and deformation based on Soni's 
blending functions [13], and also provided analytical sensitivity derivatives by 
using the automatic differentiation tool ADIC [21].  

Hartwich and Agrawal used a variation of the TFI method for the field grid 
deformation [15]. They introduced two new techniques: 1) the use of the “slave-
master” concept to semiautomate the process and 2) the use of a Gaussian 
distribution function to preserve the integrity of grids in the presence of multiple 
body surfaces. Reuther et al. [14] used a modified TFI approach with blending 
functions based on arc length. They used finite-difference approximation to 
compute the sensitivity derivatives for the field grid. Leatham and Chappell used 
a Laplacian technique, more commonly used for unstructured grid deformation 
[16].  

Unstructured Grid Generation and Deformation 

For unstructured grids with large geometry changes, a new grid may need to be 
generated at the beginning of each optimization cycle. However, for gradient 
calculations, many small changes must be made, and to regenerate the grid for 
each design variable perturbation would be too costly. In addition, the new, 



  

perturbed grid may not have the same number of grid points and/or the same 
connectivity; either of these situations will result in discontinuous sensitivity 
derivatives. Botkin has introduced a local regridding procedure that operates 
only on the specific edges and faces associated with the design variable changes 
[28]. Similarly, Kodiyalam, Kumar, and Finnigan used a grid regeneration 
technique based on the assumption that the solid model topology stays fixed for 
small perturbations [29]. Solid model topology comprises the number of grid-
points, edges, and faces. Any change in the topology will cause the model 
regeneration to fail. To avoid such a failure, a set of constraints among design 
variables must be satisfied, in addition to constraints on their bounds.  

Batina presented a grid deformation algorithm that models grid edges with 

springs [30]. The spring stiffness mk  for a given edge jk  is taken to be 

inversely proportional to the element edge length. Then, the grid movement is 
computed through predictor and corrector steps. The predictor step is based on 
an existing solution from the previous cycle, and the corrector step uses several 
Jacobi iterations of the static equilibrium equations: 
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The term δ is the deformation, and the summation is over all the edges of the 
elements. Equation 2 is similar to a Laplace operator, which has a diffusive 
behavior. Zhang and Belegundu proposed a similar algorithm to handle large 
grid movement [31]. They used the ratio of the cell Jacobian to the cell volume 
for the spring stiffness. 

Crumpton and Giles found the spring analogy inadequate and ineffective for 
large grid perturbations [32] and proposed a formulation based on the heat 
conduction equation: 
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The term ε  is a small positive number needed to avoid a division by zero. This 
technique is similar to the spring analogy [30], except that it uses the cell volume 

for mk . The coefficient mk  is relatively large for small cells. Therefore these 

small cells, which are usually near the surface of the body, tend to undergo rigid 
body movement. This rigid body movement avoids rapid variations in 
deformation, thus eliminating the possibility of small cells having very large 
changes in volume, which could lead to negative cell volumes. With Eq. (3), 



  

Crumpton and Giles used an underrelaxed Jacobi iteration, with the nonlinear 

mk  evaluated at the previous iteration [32]. 

Conclusions 
The major grid generation challenges for an automated aerospace MDO 
application with high-fidelity analysis tools are: 

• automation of geometry abstraction 

• automation of grid generation 

• calculation of CAD-based analytical sensitivity 
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